Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabditis elegans.
نویسندگان
چکیده
The life span of the nematode Caenorhabditis elegans is under control of sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 13 Galpha subunits and a Ggamma subunit, which are involved in the transduction and modulation of sensory signals. Here, we show that loss-of-function mutations in the Galpha subunits odr-3, gpa-1 and gpa-9, in the Ggamma subunit gpc-1 and the introduction of extra copies of the Galpha subunit gpa-11 extend the life span of C. elegans. Loss-of-function of odr-3 and extra copies of gpa-11 act synergistically and can together extend life span more than two-fold, indicating that sensory signals play an important role in regulating life span. We show that gpa-1, gpa-11, odr-3 and gpc-1 all signal via the daf-16 FOXO family transcription factor. In addition, odr-3 and gpa-11 might suppress life span extension partially independent of the insulin/IGF-1 like receptor homologue daf-2. Our results suggest that the previously unanticipated nociceptive ASH and/or ADL neurons regulate longevity. We expect that the implication of specific G proteins will eventually contribute to the identification of the sensory cues that determine the rate of aging in C. elegans.
منابع مشابه
Regulation of Drosophila life span by olfaction and food-derived odors.
Smell is an ancient sensory system present in organisms from bacteria to humans. In the nematode Caenorhabditis elegans, gustatory and olfactory neurons regulate aging and longevity. Using the fruit fly, Drosophila melanogaster, we showed that exposure to nutrient-derived odorants can modulate life span and partially reverse the longevity-extending effects of dietary restriction. Furthermore, m...
متن کاملRegulation of C. elegans Longevity by Specific Gustatory and Olfactory Neurons
The life span of C. elegans is extended by mutations that inhibit the function of sensory neurons. In this study, we show that specific subsets of sensory neurons influence longevity. We find that certain gustatory neurons inhibit longevity, whereas others promote longevity, most likely by influencing insulin/IGF-1 signaling. Olfactory neurons also influence life span, and they act in a distinc...
متن کاملAntagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans.
Caenorhabditis elegans shows chemoattraction to 0.1-200 mM NaCl, avoidance of higher NaCl concentrations, and avoidance of otherwise attractive NaCl concentrations after prolonged exposure to NaCl (gustatory plasticity). Previous studies have shown that the ASE and ASH sensory neurons primarily mediate attraction and avoidance of NaCl, respectively. Here we show that balances between at least f...
متن کاملDefining specificity determinants of cGMP mediated gustatory sensory transduction in Caenorhabditis elegans.
Cyclic guanosine monophosphate (cGMP) is a key secondary messenger used in signal transduction in various types of sensory neurons. The importance of cGMP in the ASE gustatory receptor neurons of the nematode Caenorhabditis elegans was deduced by the observation that multiple receptor-type guanylyl cyclases (rGCs), encoded by the gcy genes, and two presently known cyclic nucleotide-gated ion ch...
متن کاملGenes That Act Downstream of Sensory Neurons to Influence Longevity, Dauer Formation, and Pathogen Responses in Caenorhabditis elegans
The sensory systems of multicellular organisms are designed to provide information about the environment and thus elicit appropriate changes in physiology and behavior. In the nematode Caenorhabditis elegans, sensory neurons affect the decision to arrest during development in a diapause state, the dauer larva, and modulate the lifespan of the animals in adulthood. However, the mechanisms underl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 303 2 شماره
صفحات -
تاریخ انتشار 2007